
1

“ If you can’t measure it, you
can’t improve it”

— Lord Kelvin

WHY MEASURE?

2

FEEDBACK CONTROL

Measure

Analyze Plan

Configure

Controller

System

3

STABILITY REQUIREMENTS

Observable

• Ability to monitor all important system states

• Example: To safely drive a car you need to see the road ahead, mirrors, and speedometer

Controllable

• Ability to influence all important system states

• Example: To control a car’s speed and direction you need to have a steering wheel, accelerator, and brakes

Responsive

• Feedback loop must be fast enough to track changes

• Example: To avoid a car accident you need to react quickly if the car ahead brakes suddenly.

4

“ In God we trust. All others
bring data.”

— Dr. Edwards Deming

WHAT IS SFLOW?

5

NETWORK AND SYSTEM OBSERVABILITY
Switches

Servers

Switch ASIC

Linux

SmartNIC GPU

Linux

Switch ASIC

Linux

Switch ASIC

Linux

Switch ASIC

Linux

SmartNIC GPU

Linux

sFlow-RT
Telemetry

REST

Analytics

• Real-time
• Scaleable
• Programmable

Embedded monitoring of all switches, all servers, all applications, all the time Consistent measurements shared between multiple management tools

6

STANDARD COUNTERS

Network (maintained by hardware in network devices)

• MIB-2 ifTable: ifInOctets, ifInUcastPkts, ifInMulticastPkts, ifInBroadcastPkts, ifInDiscards, ifInErrors,
ifUnkownProtos, ifOutOctets, ifOutUcastPkts, ifOutMulticastPkts, ifOutBroadcastPkts, ifOutDiscards, ifOutErrors

Host (maintained by operating system kernel)

• GPU: device_count, processes, gpu_time, mem_time, mem_total, mem_free, ecc_errors, energy, temperature,
fan_speed

• CPU: load_one, load_five, load_fifteen, proc_run, proc_total, cpu_num, cpu_speed, uptime, cpu_user,
cpu_nice, cpu_system, cpu_idle, cpu_wio, cpu_intr, cpu_sintr, interupts, contexts

• Memory: mem_total, mem_free, mem_shared, mem_buffers, mem_cached, swap_total, swap_free, page_in,
page_out, swap_in, swap_out

• Disk IO: disk_total, disk_free, part_max_used, reads, bytes_read, read_time, writes, bytes_written, write_time

Application (maintained by application)

• HTTP: method_option_count, method_get_count, method_head_count, method_post_count,
method_put_count, method_delete_count, method_trace_count, method_connect_count, method_other_count,
status_1xx_count, status_2xx_count, status_3xx_count, status_4xx_count, status_5xx_count,
status_other_count

7

SFLOW’S SCALABLE PUSH PROTOCOL

Simple

• standard structures containing densely packed blocks of counters

• extensible (tag, length, value)

• RFC 1832: XDR encoded (big endian, quad-aligned, binary) - simple to encode/decode

• unicast UDP transport

Minimal configuration

• collector address

• polling interval

Cloud friendly

• flat, two tier architecture: many embedded agents → central “smart” collector

• sFlow agents automatically start sending metrics on startup, automatically discovered

• eliminates complexity of maintaining polling daemons (and associated configurations)

8

COUNTERS AREN’T ENOUGH

• Counters tell you there is a problem, but not why.
• Counters summarize performance by dropping high

cardinality attributes:
• ip addresses
• protocols
• ports

• Need to be able to efficiently disaggregate counter by
attributes in order to understand root cause of
performance problems

• How do you get this data when there are millions of
packets per second?

Don’t tell you why there is a spike

Why the spike in traffic?

(100Gbit link carrying 14,000,000 packets/second)

9

RANDOM SAMPLING

• Random sampling is lightweight
• Unbiased results with known accuracy
• Sampled packet header (128 bytes)
• Forwarding state associated with sampled packet (e.g.

ingress/egress port, VLAN, next hop, CIDR etc.)
• Linux kernel instrumenation randomly samples packets
• Offload to hardware instrumentation on network switch

scales functionality to Terabit/s speeds
• Identify top sources, destinations, connections, protocols

Scaleable method of adding details

Break out traffic by client, server and port

(graph based on samples from100Gbit link carrying 14,000,000 packets/second)

10

NEW! PACKET DROP EVENTS

• Discard counters tell you that packets are being dropped, but
not root cause

• Packet discards are rare and unlikely to be sampled
• Packet discards can severely impact performance and

availability of critical services
• Packet discard notifications in sFlow:

• Discarded packet header (128 bytes)
• Reason for dropping packet

• Linux kernel netlink drop_monitor API reports each dropped
packet and the reason it was dropped

• Offload to hardware instrumentation on a network switch
scales functionality to Terabit/s network speeds

• Identify sources, destinations, protocols, locations of discards

Details of rare but critical drop events

11

MEASUREMENTS STREAMS COMBINE FOR OBSERVABILITY

Pe
ri

od
ic

 c
ou

nt
er

s

Ra
nd

om
 s

am
pl

es

Dr
op

 n
ot

if
ic

at
io

ns

Observable

sFlow’s integrated data model combines measurement streams for comprehensive view

12

SFLOW IS AN INDUSTRY STANDARD
Broad multi-vendor support ensures observability of physical network

13

HOST SFLOW
Extends observability into software network edge

14

GPU CLUSTER DEMO

15

Configure sFlow agents

Host sFlow agent pre-installed on Cumulus Linux
Download server package from https://sflow.net
Same software and configuration on switches and servers
minimises operational complexity

Edit /etc/hsflowd.conf
Minimal configuration
sflow {
 collector { ip = 10.31.234.46 }
}

https://sflow.net

16

sFlow-RT analyzer

Real-time sFlow analytics as a microservice:
• sFlow telemetry in on UDP port 6343
• Analytics out through REST API on port 8008

Download packages from https://sflow-rt.com

Pre-packaged Docker image
docker run -d \
-p 6343:6343/udp \
-p 8008:8008 \
sflow/prometheus

https://sflow-rt.com

17

https://youtu.be/XdMkcK_AoQc

Talk and demo available on YouTube

https://youtu.be/XdMkcK_AoQc

